
C++ Toolkit Book The GUI Library

17-1

17. The GUI Library
Created: April 1, 2003
Updated: September 16, 2003

Summary
GUI [include/gui | src/gui]

GUI [Library gui: include | src]

• GUI Development

• FLTK Documentation

• Sequence View

NCBI C++ GUI Development
We have decided to use FLTK and OpenGL for our GUI needs.

Presently, we use FLTK Release 1.1. Internal developers can use pre-built FLTK from
$NCBI/fltk/ on UNIX platforms, and from \\DISSY\public\fltk\ on MS-Windows. Its full source

archive is available internally at $NCBI/fltk/share/src/fltk-1.1.0-source.tar.bz2.
GUI part of the NCBI C++ Toolkit defines its own namespace: "gui". GUI namespace will also

include NCBI namespace. In your code use BEGIN_GUI_SCOPE and END_GUI_SCOPE when

working on GUI projects
GUI part of the NCBI C++ Toolkit introduces the type definitions shown in Table 1.

Table 1. Type Definitions

Type Description

TColor used to deal with colors in GUI. Sequence View stores
the color that is either an index into a color palette of
256 colors (like FL_YELLOW) or a 24-bit RGB color.
The color palette is not the X or WIN32 color map,
but instead is an FLTK internal table with fixed con-
tents. Currently defined as Fl_Color. Take a look into
FL/Enumerations.H in the FLTK for complete list of
definitions. Take a look into FLTK documentation on
how to define new colors.

TKey used to store the values for keyboard keys like FL_Left,
'c', 'A', FL_Page_Up. Currently defined as integer.
Take a look into FL/Enumerations.H in the FLTK for
complete list of definitions.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/gui
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/gui
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/gui
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/gui
http://www.fltk.org/documentation.php
http://www.fltk.org/documentation.php
http://www.opengl.org/

C++ Toolkit Book The GUI Library

17-2

Type Description

TKeyState used to store the values for keyboard keys modifiers
like Control, Alt or Shift (FL_CTRL, FL_ALT,
FL_SHIFT). Currently defined as integer. Take a look
into FL/Enumerations.H in the FLTK for complete list
of definitions.

TLineNo used to store line numbers in the Sequence View. Cur-
rently defined as integer.

TCharNo used to store character positions in the Sequence View.
Currently defined as integer.

TDimension used to store various measurements in the Sequence
View. Currently defined as integer.

TPosition used to store X or Y coordinates in the Sequence View.
Currently defined as integer.

Sequence View (SeqView) Control

• Overview.

• The SeqView architecture.

• Classes overview.

• Setting up the Sequence View.

• Setting up SeqView with FLUID

• Setting up SeqView manually

• Sequence View Data Source

• Creating a data source

• Displaying molecule features

• Using NCBI C++ Toolkit Object Manager to implement data source

• Implementing GetSequenceLength with Object Manager

• Implementing GetSequence with Object Manager

• Implementing GetFeatures with Object Manager

C++ Toolkit Book The GUI Library

17-3

• Handling keyboard and mouse events

• Keyboard events

• Cut/Copy/Paste events

• Double-click event

• Sequence View Methods

• Assigning a data source

• Feature display

• Sequence Selection

• Sequence Cursor

• Sequence View Colors

• Sequence View Demo Application

Overview
The NCBI GUI SEQ library describes and implements a set of objects needed to display and nav-
igate molecule sequences and features. The basic functionality allows to display a molecule
sequence and features, use mouse or keyboard to select parts of the sequence, get feature
information, change features shape, change various interface colors. The main advantage of
using the SeqView is that you can have multiple sequence data sources and can easily and fast
switch between them (see Figure 1).

C++ Toolkit Book The GUI Library

17-4

Figure 1: Sequence View

The SeqView architecture.
The Sequence View relies on two external components: OpenGL and FLTK. OpenGL is used for
all drawing, FLTK is used to layout and display GUI elements.

Classes overview.
The SeqView consists of a three classes:

CSeqPanel OpenGL panel inherited from Fl_Gl_Window. Actual drawing is done here. CSe-
qView The Sequence View itself. Contains CSeqPanel and Fl_Scrollbar. CSeqDataSource A
Sequence View data source. Used by CSeqPanel to get sequence and features to draw. All
mouse and keyboard events are also handled here. Inherit your data source implementation from
this class.

Setting up the Sequence View
These three steps are required to use SeqView in your code:

1. Create an instance of Sequence View Widget.

2. Define your data source (inherit CSeqDataSource and implement required methods)

3. Register the data source with Sequence View.

C++ Toolkit Book The GUI Library

17-5

Setting up SeqView with FLUID
The easiest way to setup a Sequence View is to use FLUID - FLTK interface designer:

1. Add new Fl_Group (New->group->Group in FLUID menu) to your window.

2. Enter CSeqView as a class name in the C++ tab of the Property dialog.

3. Enter m_SeqView as a member name.

4. Enter #include "gui/seq/view.hpp" in the "extra code" field below

5. FLUID will generate code to create an instance of CSeqView and to add it to your win-
dow.

Setting up SeqView manually
To setup Sequence View manually use the standard FLTK widgets constructor. Something like:

CSeqView* m_SeqView = new CSeqView(10, 40, 850, 390);

Sequence View Data Source
Creating a data source

The data source is required to provide Sequence View with the actual sequence data to display.
To create a data source:

1. Inherit your data source from CSeqDataSource

C++ Toolkit Book The GUI Library

17-6

2. Implement the 4 required methods. TSeqPos GetSequenceLength() to return the
sequence length void GetSequence(TSeqPos from, TSeqPos to, string& buffer) to fill
buffer with molecule sequence within a given region void GetFeatures(TSeqPos from,
TSeqPos to, vector& vec) to fill vector of features within a given region

3. Implement optional methods, such as keyboard and mouse events handling.

4. Register your data source with Sequence View by calling SetDataSource() method of the
Sequence View.

Displaying molecule features
Sequence View is capable of displaying four different kinds of feature shapes. These shapes are
defined in the CVisibleFeature class.

enum EType {
 eBox, // a rectangle
 eRightArrow, // a right facing arrow
 eLeftArrow, // a left facing arrow
 eMulti // a feature with multiple features on it
};

Attributes of each feature are shown in Table 2.

Table 2. Sequence View Features and Attributes

Feature Attribute

string m_Id Unique ID to identify feature
TseqPos m_From Feature start
TseqPos m_To Feature finish
TColor m_Color Feature color
EType m_Type Shape to represent the feature.
TDimension m_Height Height of the feature bar. Two extra margin pixels

(on top and bottom) will be automatically added
to this value.

vector< CVisibleFeature > m_SubIntervals Define sub-intervals for multi features (eMulti
type). For all other feature types this will be
ignored.

Table 3 demonstrates various kinds of shapes, height and colors to customize feature dis-
play.

C++ Toolkit Book The GUI Library

17-7

Table 3. Feature Display

Type Appearance (Heights from 1 to 5)

eBox

eRightArrow

eLeftArrow

eMulti

Using NCBI C++ Toolkit Object Manager to implement data source
The NCBI C++ Toolkit Object Manager is ideally suited for use in the Sequence View data
sources.

Implementing GetSequenceLength with Object Manager

TSeqPos GetSequenceLength()
CSeqVector seq_vect = bioseq_handle.GetSeqVector(EVectorCoding ::eCoding_Iupac, EVec-
torStrand::eStrand_Plus);
return seq_vect.size();

Implementing GetSequence with Object Manager

void GetSequence(TSeqPos from, TSeqPos to, string& buffer)
seq_vect.GetSeqData (from, to, buffer);

Implementing GetFeatures with Object Manager

void GetFeatures(TSeqPos from, TSeqPos to, vector& vec)

for (CFeat_CI feat_it(bioseq_handle, from, to, CSeqFeatData::e_Genes); feat_it; ++feat_it)
{
 const CSeq_feat& feat = *feat_it;

 CVisibleFeature vf;
 vf.m_Id = "Gene: " + feat.GetTitle();
 vf.m_From = feat.GetLocation().GetTotalRange().GetFrom();
 vf.m_To = feat.GetLocation().GetTotalRange().GetTo();

C++ Toolkit Book The GUI Library

17-8

 vf.m_Height = 3;
 vf.m_Color = FL_RED;
 vf.m_Type = CVisibleFeature::eBox;
 vec.push_back(vf);
}

Features will be shown in the Sequence View in the exact order of features in "vec" vector.

The best way to group features by type is to iterate through one kind of feature after another in
the order you would like them to appear in the Sequence View.

Handling keyboard and mouse events.
The support for keyboard and mouse events is implemented in the Sequence View data source.
One can override any of the following virtual functions and implement its own handlers for these
events, which are:

KeyPressed, Cut, Copy, Paste, DoubleClick

enum ERedraw {
 eRedraw, - Redraw the view after event
 eNoRedraw - Do not redraw the view after event
}

If a method modifies the data it should return an "eRedraw" – a notice to Sequence View to

redraw itself. eNoRedraw indicates that no changes to the data was made and therefore redraw
is not necessary.

Keyboard events
The KeyPressed method will be called each time a key is pressed in the Sequence View.

ERedraw KeyPressed(TKey key, TKeyState key_state, TSeqPos cursor);

In this call "key" is FLTK definition for a key pressed and "key_state" contains keyboard

states for Shift, Control, Alt and some other keys. Please refer to FL/Enumerations.H in FLTK for
complete list of keys and keystate definitions. The "cursor" contains current position of a

Sequence Cursor in the view.
One of possible uses of this method is to implement an "inline" editing of a molecule

sequence.

Cut/Copy/Paste events
Separately from the keyboard events handler, methods for clipboard shortcuts are implemented.
These methods will be called each time a Cut, Copy or Paste key combination is pressed in the
Sequence View. These key combinations are platform-dependent and handled by FLTK engine.
(For example: Ctrl-C, for Copy on Windows and Option-C on Mac).

ERedraw Cut (TSeqPos from, TSeqPos to, TSeqPos cursor);
ERedraw Copy (TSeqPos from, TSeqPos to, TSeqPos cursor);
ERedraw Paste(TSeqPos from, TSeqPos to, TSeqPos cursor);

C++ Toolkit Book The GUI Library

17-9

In these calls "from" and "to" define the position of the sequence selection in the View and

"cursor" is a current cursor position. Don't forget to return eRedraw if the sequence data is mod-

ified by those methods.

Double-click event
DoubleClick method is called each time when double-click event occurs in the valid area of the
Sequence View.

ERedraw DoubleClick(TSeqPos at, const string& feature_id);

In this call "at" is a sequence position of the double click and "feature_id" contains the ID

of a feature if feature was clicked on.

Sequence View Methods
The following ten methods are available in Sequence View:

SetDataSource, ShowFeatures, HideFeatures, SetSelection, GetSelectionStart, GetSelec-
tionFinish, SetCursor, GetCursor, SetColor and GetColor.

Setting up a data source
Use SetDataSource method to register a new DataSource with Sequence View.

void SetDataSource(CSeqDataSource* ds)

In this call "ds" is a user data source inherited from CSeqDataSource.

Feature display
To enable or disable display of a sequence features use the following pair of Sequence View
methods.

void ShowFeatures() – to enable features display.
void HideFeatures() – to disable features display.

By default, features are not shown.

Sequence Selection
Region of the sequence can be selected programmatically using:

void SetSelection(TSeqPos start, TSeqPos finish)

To obtain the current sequence selection region, use the following pair of methods:

TSeqPos GetSelectionStart() - get start of selected region
TSeqPos GetSelectionFinish() - get finish of selected region

Sequence Cursor
Position of the cursor in the sequence can be set or retrieved using:

C++ Toolkit Book The GUI Library

17-10

void SetCursor(TSeqPos pos)
TSeqPos GetCursor()

Sequence View Colors
Sequence view allows customizing the color of the following display elements:

enum EDisplayElement {
 eBackground, // the Sequence View background color. The default is FL_BLACK.
 eGrid, // the color of grid lines. The default is FL_GRAY.
 eNumbers, // the color of sequence numbers. The default is FL_YELLOW.
 eSequence, // the color of sequence letters. The default is FL_WHITE.
 eSelection, // the color of sequence selection. The default is FL_BLUE.
 eCursor // the color of sequence cursor. The default is FL_GREEN.
};

Please refer to FLTK documentation for a complete list of fixed color definitions or use
fl_rgb_color() call to create your own color:

Fl_Color c = fl_rgb_color(85, 170, 255);

The following pair of methods allows setting and retrieving the color of a particular display
element of a Sequence View.

void SetColor(EDisplayElement elem, TColor color)
TColor GetColor(EDisplayElement elem)

Sequence View Demo Application
Demo View is small application to demonstrate the basics of the Sequence View.

demo_view.cpp - code generated by FLUID (Fast Light User Interface Designer). Please use
FLUID to open demo_view.fl template file.

CSeqViewTestDS - is a sample data source that uses NCBI C++ Toolkit Object Manager to
get real molecules from DB.

The demo data source also implements a sample Cut/Copy/Paste operations and double-
click handling.

